问题1077--导弹拦截1

1077: 导弹拦截1

时间限制: 1 Sec  内存限制: 128 MB
提交: 67  解决: 30
[提交] [状态] [讨论版] [命题人:]

题目描述

经过 11 年的韬光养晦,某国研发出了一种新的导弹拦截系统,凡是与它的距离不超过其工作半径的导弹都能够被它成功拦截。当工作半径为 0 时,则能够拦截与它位置恰好相同的导弹。但该导弹拦截系统也存在这样的缺陷:每套系统每天只能设定一次工作半径。而当天的使用代价,就是所有系统工作半径的平方和。
某天,雷达捕捉到敌国的导弹来袭。由于该系统尚处于试验阶段,所以只有两套系统投入工作。如果现在的要求是拦截所有的导弹,请计算这一天的最小使用代价。

输入

输入文件名 missile.in。
第一行包含 4 个整数x1、y1、x2、y2,每两个整数之间用一个空格隔开,表示这两套导弹拦截系统的坐标分别为(x1, y1)、(x2, y2)。
第二行包含 1 个整数 N,表示有 N颗导弹。接下来 N行,每行两个整数 x、y,中间用
一个空格隔开,表示一颗导弹的坐标(x, y)。不同导弹的坐标可能相同。

输出

输出文件名 missile.out。
输出只有一行,包含一个整数,即当天的最小使用代价。
【提示】
两个点(x1, y1)、(x2, y2)之间距离的平方是(x1− x2)^2+(y1−y2)^2。
两套系统工作半径 r1、r2的平方和,是指 r1、r2 分别取平方后再求和,即 r1^2+r2^2。

样例输入 Copy

0 0 10 0
2
-3 3
10 0

样例输出 Copy

18

提示

【样例 1 说明】
样例1中要拦截所有导弹,在满足最小使用代价的前提下,两套系统工作半径的平方分别为 18 和 0。
in:
0 0 6 0
5
-4 -2
-2 3
4 0
6 -2
9 1
out:
30
【样例 2 说明】
样例中的导弹拦截系统和导弹所在的位置如下图所示。要拦截所有导弹,在满足最小使用代价的前提下,两套系统工作半径的平方分别为 20 和 10。
【数据范围】
对于 10%的数据,N = 1
对于 20%的数据,1 ≤ N ≤ 2
对于 40%的数据,1 ≤ N ≤ 100
对于 70%的数据,1 ≤ N ≤ 1000
对于 100%的数据,1 ≤ N ≤ 100000,且所有坐标分量的绝对值都不超过 1000。

来源/分类